P(n):1+3+32+...+3n−1=3n−12
The statement P(n)
is true for all natural numbers
P(n):1+3+32+...+3n−1=3n−12P(1):1=3−12⇒1=1− true
Assume P(k) is true
⇒1+3+32+...+3k−1=3k−12Now, P(k+1):1+3+32+...+3k−1+3k=3k−12+3k=3k(1+12)−12=3k+1−12
P(k+1) is also true.
Hence, P(n) is true for all natural numbers