simplify- 4/8 + 6/24 - 12/4 + 9/12 (13/9x-15/2) - (7/3x8/5) + (3/5x1/2)
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
Re-arrange suitably and find the sum in each of the following :
(i)1112+−173+112+−252
(ii)−67+−56+−49+−157
(iii)35+73+95+−1315+−73
(iv) 413+−58+−813+913
(v)23+−45+13+25
(vi) 18+512+27+712+97+−516
source (i)89+−116(ii)3+5−7(iii)1−12 and 2−15(iv)−819+−457(v)79+3−4(vi)526+11−39(vii)−169+−512(viii)−138+536(ix)0+−35(x)1+−45(xi)−516+724
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2