The correct option is A √2(cos3π4+isin3π4)
Let z=(1+7i)(2−i)2
z=1+7i4−4i+i2⇒z=1+7i3−4i⇒z=(1+7i3−4i)(3+4i3+4i)⇒z=−25+25i25⇒z=−1+i∴r=|z|=√(−1)2+(1)2=√2
Let α be the acute angle given by
tanα=∣∣∣Im(z)Re(z)∣∣∣=∣∣∣−11∣∣∣=1⇒α=π4
Since the point (−1,1) representing z lies in the second quadrant,
∴θ=arg(z)=π−α=π−π4=3π4
Hence, z in the polar form is given by
z=√2(cos3π4+isin3π4)