PQRSTU is a regular hexagon. Determine each angle of △PQT.
Open in App
Solution
In regular hexagon, PQRSTU, diagonals PT and QT are joined.
∴ If each interior angle =2n−4n×90∘ =2×6−46×90∘=86×90∘=120∘ In △PUT,PU=UT∴∠UPT=∠UTP But ∠UPT+∠UTP=180∘−∠U=180∘−120∘=60∘∴∠UPT=∠UTP=30∘∴∠TPQ=120∘−30∘=90∘ (∵ QT is diagonal which bisect ∠Q and ∠T ) ∴∠PQT=120∘2=60∘ Now in △PQT, ∠TPQ+∠PQT+∠PTQ=180∘ (sum of angles of a triangle) ⇒90∘+60∘+∠PTQ=180∘⇒150∘+∠PTQ=180∘⇒∠PTQ=180∘−150∘=30∘ Hence in △PQT, ∠=90∘,∠Q=60∘ and ∠T=30∘