wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Principle of solar cooking

Open in App
Solution

1) Concentrating sunlight: A mirrored surface with high specular reflectivity is used to concentrate light from the sun on to a small cooking area. Depending on the geometry of the surface, sunlight can be concentrated by several orders of magnitude producing temperatures high enough to melt salt and smelt metal. For most household solar cooking applications, such high temperatures are not really required. Solar cooking products, thus, are typically designed to achieve temperatures of 65 °C (150 °F) (baking temperatures) to 400 °C (750 °F) (grilling/searing temperatures) on a sunny day.

2) Converting light energy to heat energy: Solar cookers concentrate sunlight onto a receiver such as a cooking pan. The interaction between the light energy and the receiver material converts light to heat. This conversion is maximized by using materials that conduct and retain heat. Pots and pans used on solar cookers should be matte black in color to maximize the absorption.

3) Trapping heat energy: It is important to reduce convection by isolating the air inside the cooker from the air outside the cooker. Simply using a glass lid on your pot enhances light absorption from the top of the pan and provides a greenhouse effect that improves heat retention and minimizes convection loss. This "glazing" transmits incoming visible sunlight but is opaque to escaping infrared thermal radiation. In resource constrained settings, a high-temperature plastic bag can serve a similar function, trapping air inside and making it possible to reach temperatures on cold and windy days similar to those possible on hot days.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solar Thermal Power Plant
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon