BD = 3 CD Let CD = x ⇒BD=3x and BC=4x ∴CD=14BC……(i)BD=34BC……(ii)InrightΔADB,AD2=AB2−BD2……(iii)InrightΔADC,AD2=AC2−CD2……(iv)From(iii)and(iv),wegetAB2−BD2=AC2−CD2∴AB2=AC2−CD2+BD2∴AB2=AC2−(14BC)2+(34BC)2∴AB2=AC2−BC216+9BC216∴AB2=AC2−BC216+9BC216∴AB2=AC2−(BC2−9BC216)∴AB2=AC2+/81BC2/162∴AB2=AC2+BC22∴2AB2=2AC2+BC2 Hence proved