In any triangle with the sides a,b,c and A,B,C are the angles respectively, the sine Formula is asinA=bsinB=csinC=K
a=KsinA,b=KsinB,c=KsinC And sum of the angles of a triangle =1800 it means A+B+C=180, A=180−(B+C), B+C=180−A now, we have to prove, (b+c)cosB+C2=cosB−C2 we can write this as, b+ca=cosB−C2cosB+C2
So, L.H.S, b+ca=KsinB+KsinCKsinA
From,sinX+sinY=2sinX+Y2∗cosX−Y2 and sin2θ=2sinθ∗cosθ