wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove (b+c)cosB+C2=acosBC2

Open in App
Solution

In any triangle with the sides a,b,c and A,B,C are the angles respectively,
the sine Formula is asinA=bsinB=csinC=K

a=KsinA,b=KsinB,c=KsinC
And sum of the angles of a triangle =1800
it means A+B+C=180,
A=180(B+C),
B+C=180A
now, we have to prove,
(b+c)cosB+C2=cosBC2
we can write this as,
b+ca=cosBC2cosB+C2
So, L.H.S, b+ca=KsinB+KsinCKsinA

From,sinX+sinY=2sinX+Y2cosXY2 and sin2θ=2sinθcosθ

b+ca=2KsinB+C2cosBC2KsinA

=2sin180A2cosBC22sinA2cosA2

=cosA2cosBC2sinA2cosA2

=cosBC2sin180(B+C)2

b+ca=cosBC2cosB+C2
HENCE,
(b+c)cosB+C2=acosBC2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon