To prove: (3x−2) is a factor of 18x3−3x2+6x–8.
From Factor theorem, we know that A polynomial f(x) has a factor (x–a) if and only if f(a)=0.
3x−2=0⇒x=23
So, a=23
f(a)=f(23)
=18(23)3−3(23)2+6(23)−8
=18(827)−3(49)+4−8
=(163)−(43)−4
=(123)−4
=0
Hence, (3x−2) is a factor of 18x3−3x2+6x–8.