Prove that cos3x=4cos3x-3cosx
Solve for the required proof
Given that cos3x=4cos3x-3cosx
Consider cos3x=cos2x+x
We know that cosine of summation of angles is given as
cosA+B=cosAcosB-sinAsinB
Substituting A=2x.B=x we get
cos2x+x=cos2xcosx-sin2xsinx
Using double angle identity we know that
cos2x=2cos2x-1 and sin2x=2sinxcosx
Substituting these values we get
cos3x=2cos2x-1cosx-2sinxcosxsinx
=cosx2cos2x-1-2sin2x
=cosx2cos2x-sin2x-1
=cosx2cos2x-1-cos2x-1
=cosx22cos2x-1-1
=cosx4cos2x-3
⇒cos3x=4cos3x-3cosx
Hence, it is proved that cos3x=4cos3x-3cosx.
If, prove that