We have to prove that, c−bcosAb−ccosA=cosBcosC
We know, Cosine rule
cosA=b2+c2−a22bc
cosB=a2+c2−b2ac
cosC=b2+a2−c22ab
LHS
c−bcosA=2c2−b2−c2+a22c=a2+c2−b22c
b−ccosA=2b2−c2−b2+a22b=a2+b2−c22b
c−bcosAb−ccosA=a2+c2−b2a2+b2−c2(bc)
RHS
cosBcosC=a2+c2−b22aca2+b2−c22ab=a2+c2−b2a2+b2−c2(bc)
LHS=RHS.