1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Vector Component
Prove: 4A1-s...
Question
Prove:
sec
4
A
(
1
−
sin
4
A
)
−
2
tan
2
A
=
1
Open in App
Solution
Solution :- given
Taking LHS [we know
1
+
t
a
n
2
θ
−
s
e
c
2
θ
]
⇒
s
e
c
4
A
(
1
−
s
i
n
4
A
)
−
2
t
a
n
2
A
⇒
1
c
o
s
4
A
(
1
−
s
i
n
4
A
)
−
2
t
a
n
2
A
=
s
e
c
4
A
−
t
a
n
4
A
−
2
t
a
n
2
A
⇒
(
1
+
t
a
n
2
A
)
2
−
t
a
n
4
A
−
2
t
a
n
2
A
⇒
1
+
2
t
a
n
2
A
+
t
a
n
4
A
−
t
a
n
4
A
−
2
t
a
n
2
A
⇒
1
RHS proved
Suggest Corrections
0
Similar questions
Q.
Prove that
sec
4
A
(
1
−
sin
4
A
)
−
2
tan
2
A
=
1
Q.
Prove the following identities:
s
e
c
4
A
(
1
−
s
i
n
4
A
)
−
2
t
a
n
2
A
=
1
Q.
Prove the following trigonometric identities.
sec
4
A(1 − sin
4
A) − 2 tan
2
A = 1