cos3θ=4cos3θ=3cosθ,
∴cos3θ=14(cos3θ+3cosθ).
∴sin3Acos3(B−C)
=14sin3A[cos3(B−C)+3cos(B−C)]
=14sin3(B+C)cos3(B−C)+34sin(3B+3C)cos(B−C)
=18(sin6B+sin6C)+38{sin(4B+2C)+sin(2B+4C)}
Now 4B+2C=2(B+C)+2B=2π−2A+2B
sin(4B+2C)=sin{2π+2(B−A)}=sin2(B−A).
∴ L.H.S. =18∑(sin6B+sin6C)+38∑[sin2(B−A)+sin2(C−B)]
∴∑sin3Acos3(B−C)=18⋅2∑sin6A+38⋅0
=14(sin6A+sin6B+sin6C)
=14⋅4sin3Asin3Bsin3C,
=sin3Asin3Bsin3C.