wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove sin3Acos3(BC)+sin3Bcos3(CA)+sin3Ccos3(AB)=sin3Asin3Bsin3C.

Open in App
Solution

cos3θ=4cos3θ=3cosθ,
cos3θ=14(cos3θ+3cosθ).
sin3Acos3(BC)
=14sin3A[cos3(BC)+3cos(BC)]
=14sin3(B+C)cos3(BC)+34sin(3B+3C)cos(BC)
=18(sin6B+sin6C)+38{sin(4B+2C)+sin(2B+4C)}
Now 4B+2C=2(B+C)+2B=2π2A+2B
sin(4B+2C)=sin{2π+2(BA)}=sin2(BA).
L.H.S. =18(sin6B+sin6C)+38[sin2(BA)+sin2(CB)]
sin3Acos3(BC)=182sin6A+380
=14(sin6A+sin6B+sin6C)
=144sin3Asin3Bsin3C,
=sin3Asin3Bsin3C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon