Provesin3A=3sinA-4sin3A
Prove that :sin3A=3sinA-4sin3A.
Solve the L.H.S part:
sin3A=sin(2A+A)⇒=sin2AcosA+cos2AsinA∵sin(A+B)=sinAcosB+cosAsinB⇒=2sinAcosAcosA+(1-2sin2A)sinA∵sin2A=2sinAcosAandcos2A=1-2sin2A⇒=2sinAcos2A+sinA-2sin3A⇒=sinA(2cos2A+1)-2sin3A⇒=sinA(2(1-sin2A)+1)-2sin3A∵sin2A+cos2A=1so,cos2A=1-sin2A⇒=sinA(3-2sin2A)-2sin3A⇒=3sinA-2sin3A-2sin3A⇒=3sinA-4sin3A
We can see that L.H.S = R.H.S
Hence, proved.