wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

2(sin6x+cos6x)3(sin4x+cos4x)+1=0

Open in App
Solution

LHS = 2(sin6x+cos6x)3(sin4x+cos4x)+1

=2[(sin2x)3+(cos2x)3]3(sin4x+cos4x)+1[ a3+b3=(a+b)(a2ab+b2)]=2[(sin2x+cos2x)(sin4xsin2x cos2x+cos4 x)]3 (sin4x+cos4x)+1=[sin4x+cos4x+2sin2xcos2x]+1=[sin2x+cos2x]+1
=-1 + 1
=0
=RHS


flag
Suggest Corrections
thumbs-up
120
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon