Prove that:
2(sin6x+cos6x)−3(sin4x+cos4x)+1=0
LHS = 2(sin6x+cos6x)−3(sin4x+cos4x)+1
=2[(sin2x)3+(cos2x)3]−3(sin4x+cos4x)+1[∵ a3+b3=(a+b)(a2−ab+b2)]=2[(sin2x+cos2x)(sin4x−sin2x cos2x+cos4 x)]−3 (sin4x+cos4x)+1=−[sin4x+cos4x+2sin2xcos2x]+1=−[sin2x+cos2x]+1
=-1 + 1
=0
=RHS