wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that

Open in App
Solution

The matrix of the order 3×3 is,

| a 2 bc ac+ c 2 a 2 +ab b 2 ac ab b 2 +bc c 2 |

It has to be proved that,

| a 2 bc ac+ c 2 a 2 +ab b 2 ac ab b 2 +bc c 2 |=4 a 2 b 2 c 2

Simplify the left hand side of the above equation.

| a×a b×c c( a+c ) a( a+b ) b×b a×c a×b b( b+c ) c×c |

The terms a, b and c can be taken out from the columns C 1 , C 2 and C 3 respectively.

| a c ( a+c ) ( a+b ) b a b ( b+c ) c |

Further apply the column transformation C 3 C 3 C 1 in the above determinant.

Δ=2abc| a+c c ( a+c )( a+c ) ( a+b ) b a( a+b ) ( b+c ) ( b+c ) c( b+c ) | =2abc| a+c c 0 ( a+b ) b b ( b+c ) ( b+c ) b |

Further apply the column transformation C 2 C 2 C 1 in the above determinant.

Δ=2abc| ( a+c ) a 0 ( a+b ) a b ( b+c ) 0 b |

Further, a and b can be taken out from the columns C 2 and C 3 respectively.

Δ=2abc( a )( b )| ( a+c ) 1 0 ( a+b ) 1 1 ( b+c ) 0 1 |

Expand the determinant along the row R 1 .

Δ=2 a 2 b 2 c( ( a+c )| 1 1 0 1 |1| a+b 1 b+c 1 |+0| a+b 1 b+c 0 | ) =2 a 2 b 2 c( ( a+c )| 1 1 0 1 |1| a+b 1 b+c 1 |+0 ) =2 a 2 b 2 c( ( a+c )1( a+bbc ) ) =2 a 2 b 2 c( 2c )

Δ=4 a 2 b 2 c 2

Hence, it is proved that | a 2 bc ac+ c 2 a 2 +ab b 2 ac ab b 2 +bc c 2 |=4 a 2 b 2 c 2 .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon