The matrix of the order 3×3 is,
| a 2 bc ac+ c 2 a 2 +ab b 2 ac ab b 2 +bc c 2 |
It has to be proved that,
| a 2 bc ac+ c 2 a 2 +ab b 2 ac ab b 2 +bc c 2 |=4 a 2 b 2 c 2
Simplify the left hand side of the above equation.
| a×a b×c c( a+c ) a( a+b ) b×b a×c a×b b( b+c ) c×c |
The terms a, b and c can be taken out from the columns C 1 , C 2 and C 3 respectively.
| a c ( a+c ) ( a+b ) b a b ( b+c ) c |
Further apply the column transformation C 3 → C 3 − C 1 in the above determinant.
Δ = 2abc | a+c c ( a+c )−( a+c ) ( a+b ) b a−( a+b ) ( b+c ) ( b+c ) c−( b+c ) | = 2abc | a+c c 0 ( a+b ) b −b ( b+c ) ( b+c ) −b |
Further apply the column transformation C 2 → C 2 − C 1 in the above determinant.
Δ =2abc | ( a+c ) −a 0 ( a+b ) −a −b ( b+c ) 0 −b |
Further, −a and −b can be taken out from the columns C 2 and C 3 respectively.
Δ = 2abc( −a )( −b ) | ( a+c ) 1 0 ( a+b ) 1 1 ( b+c ) 0 1 |
Expand the determinant along the row R 1 .
Δ = 2 a 2 b 2 c( ( a+c )| 1 1 0 1 |−1| a+b 1 b+c 1 |+0| a+b 1 b+c 0 | ) = 2 a 2 b 2 c( ( a+c )| 1 1 0 1 |−1| a+b 1 b+c 1 |+0 ) =2 a 2 b 2 c( ( a+c )−1( a+b−b−c ) ) =2 a 2 b 2 c( 2c )
Δ=4 a 2 b 2 c 2
Hence, it is proved that | a 2 bc ac+ c 2 a 2 +ab b 2 ac ab b 2 +bc c 2 |=4 a 2 b 2 c 2 .