Prove that 93/2−3×50−181−1/2=15.
Simplify the expression using the law of radical exponent.
93/2−3×50−181−1/2=15
Taking LCM
=93/2−3×50−181−1/2=3232−3×50−192−1/2=3232−3×50−9−2−12∵p−n=1pn=32×32−3×50−9−2×−12∵pmn=pm×n=33−3×50−91=27−3−9=15=RHS
Hence, it is been proved that 93/2−3×50−181−1/2=15.
Prove that :
(i)(√3×5−3÷3√3−1√5)×6√3×56=35(ii)932−3×50−(181)−12=15(iii)(14)−2−3×823×40+(916)−12=163(iv)212×313×41410−15×535÷343×5−754−35×6=10(v)√14+(0.01)−12−(27)23=32(vi)2n+2n−12n+1−2n=32(vii)(64125)−23+1(256625)14+(√253√64)0=6116(viii)3−3×62×√9852×3√125×(15)−43×313=28√2(ix)(0.6)0−(0.1)−1(38)−1(32)3+(13)−1=−32
From the given place value table, write the decimal number.
Find the value of 93/2 -3 x 50- (1/18)-1/2