Prove that (a+b).(a+b)=|a|2+|b|2, if and only if a, b are perpendicular, given a≠0, b≠0
(a+b).(a+b)=|a|2+|b|2⇒a.(a+b)+b.(a+b)=|a|2+|b|2⇒a.a+a.b+b.a+b.b=|a|2+|b|2⇒|a|2+2a.b+|b|2=|a|2+|b|2
2a.b=0 [∵a.b=b.a]
(scalar product is commutative)
⇒a.b=0
∴ a and b are perpendicular