∣∣
∣
∣∣aa2b+cbb2c+acc2a+b∣∣
∣
∣∣
Using operation, C1⇒C1+C3
=∣∣
∣
∣∣a+b+ba2b+ca+b+cb2c+aa+b+cc2a+b∣∣
∣
∣∣
Taking out (a+b+c) as common term, we get
=(a+b+c)∣∣
∣
∣∣1a2b+c1b2c+a1c2a+b∣∣
∣
∣∣
Using operation, R1⇒R1−R2,R2⇒R2−R3
=(a+b+c)∣∣
∣
∣∣0a2−b2b−a0b2−c2c−b1c2a+b∣∣
∣
∣∣
Taking out (a−b) and (b−c) as common from R1 and R2 respectively, we get
=(a+b+c)(a−b)(b−c)∣∣
∣∣0a+b−10b+c−11c2a+b∣∣
∣∣
Now, expanding along the element in R3 and C1, we get
∣∣
∣
∣∣aa2b+cbb2c+acc2a+b∣∣
∣
∣∣=(a+b+c)(a−b)(b−c)(c−a)