Consider, ∣∣
∣
∣∣bc−a2ca−b2ab−c2−bc+ca+abbc−ca+abbc+ca−ab(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)∣∣
∣
∣∣
=∣∣
∣
∣∣bc−a2ca−b2ab−c2−bc+ca+abbc−ca+abbc+ca−aba2+ab+bc+acb2+ab+bc+acc2+ab+bc+ac∣∣
∣
∣∣
R3→R3+R1
=∣∣
∣∣bc−a2ca−b2ab−c2−bc+ca+abbc−ca+abbc+ca−abab+2bc+acab+bc+2ac2ab+bc+ac∣∣
∣∣
C1→C1−C2,C2→C2−C3
=∣∣
∣
∣∣(b−a)(a+b+c)(c−b)(a+b+c)ab−c22c(a−b)2a(b−c)bc+ca−abc(b−a)a(c−b)2ab+bc+ac∣∣
∣
∣∣
=(a−b)(b−c)∣∣
∣
∣∣−(a+b+c)−(a+b+c)ab−c22c2abc+ca−ab−c−a2ab+bc+ac∣∣
∣
∣∣
R2→R2+2R3
=(a−b)(b−c)∣∣
∣
∣∣−(a+b+c)−(a+b+c)ab−c2003bc+3ca+3ab−c−a2ab+bc+ac∣∣
∣
∣∣
Expanding along second row, we get
=3(a−b)(b−c)(ab+bc+ca)(c−a)(a+b+c)