wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that ∣ ∣bcbc+bcbccaca+cacaabab+abab∣ ∣=(abab)(bcbc)(caca)

Open in App
Solution

Let Δ=∣ ∣bcbc+bcbccaca+cacaabab+abab∣ ∣
Taking (bc),(ca) and (ab) common from R1,R2 and R3 respectively, we get
Δ=(bc)(ca)(ab)∣ ∣ ∣ ∣ ∣ ∣bcbcbb+cc1cacacc+aa1ababaa+bb1∣ ∣ ∣ ∣ ∣ ∣
Applying R2R2R1,R3R3R1
Δ=(abc)2∣ ∣ ∣ ∣ ∣ ∣ ∣bcbcbb+cc1cc(aabb)(aabb)0bb(aacc)aacc0∣ ∣ ∣ ∣ ∣ ∣ ∣Δ=(abc)2(aabb)(aacc)∣ ∣ ∣ ∣ ∣ ∣bcbcbb+cc1cc10bb10∣ ∣ ∣ ∣ ∣ ∣Δ=(abc)2abababacacac(ccbb)=(abab)(bcbc)(caca)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon