Let Δ=∣∣
∣∣bcbc′+b′cb′c′caca′+c′ac′a′abab′+a′ba′b′∣∣
∣∣
Taking (b′c′),(c′a′) and (a′b′) common from R1,R2 and R3 respectively, we get
Δ=(b′c′)(c′a′)(a′b′)∣∣
∣
∣
∣
∣
∣∣bcb′c′bb′+cc′1cac′a′cc′+aa′1aba′b′aa′+bb′1∣∣
∣
∣
∣
∣
∣∣
Applying R2→R2−R1,R3→R3−R1
Δ=(a′b′c′)2∣∣
∣
∣
∣
∣
∣
∣∣bcb′c′bb′+cc′1cc′(aa′−bb′)(aa′−bb′)0bb′(aa′−cc′)aa′−cc′0∣∣
∣
∣
∣
∣
∣
∣∣Δ=(a′b′c′)2(aa′−bb′)(aa′−cc′)∣∣
∣
∣
∣
∣
∣∣bcb′c′bb′+cc′1cc′10bb′10∣∣
∣
∣
∣
∣
∣∣Δ=(a′b′c′)2ab′−a′ba′b′ac′−a′ca′c′(cc′−bb′)=(ab′−a′b)(bc−b′c)(ca′−c′a)