wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosA1+sinA+1+sinAcosA=2secA


Open in App
Solution

Consider, L.H.S=cosA1+sinA+1+sinAcosA

=cos2A+1+sinA2cosA.1+sinA

=cos2A+12+21sinA+sinA2cosA.1+sinA

=cos2A+1+2sinA+sin2AcosA.1+sinA

=cos2A+sin2A+1+2sinAcosA.1+sinA

=1+1+2sinAcosA.1+sinA [sin²A+cos²A=1]

=2+2sinAcosA.1+sinA

=2(1+sinA)cosA.1+sinA

=2cosA

=2secA [1cosA=secA]

=R.H.S.

Hence it is proved that, cosA1+sinA+1+sinAcosA=2secA


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon