Prove that cosA1+sinA+1+sinAcosA=2secA
Consider, L.H.S=cosA1+sinA+1+sinAcosA
=cos2A+1+sinA2cosA.1+sinA
=cos2A+12+21sinA+sinA2cosA.1+sinA
=cos2A+1+2sinA+sin2AcosA.1+sinA
=cos2A+sin2A+1+2sinAcosA.1+sinA
=1+1+2sinAcosA.1+sinA [sin²A+cos²A=1]
=2+2sinAcosA.1+sinA
=2(1+sinA)cosA.1+sinA
=2cosA
=2secA [1cosA=secA]
=R.H.S.
Hence it is proved that, cosA1+sinA+1+sinAcosA=2secA
From the following place value table, write the decimal number:-
From the given place value table, write the decimal number.
Prove the identity cos2A/1+sinA+1+sinA/cosA=2secA
Prove that:
cosA1+sinA+1+sinAcosA=2SecA