ddx(√1+x1−√x)
Using chain rule of differentiation, we have
=12√1+x1−√xddx(1+x1−√x)
=12√1+x1−√x×(1−√x)ddx(1+x)−(1+x)ddx(1−√x)(1−√x)2
=√1−√x2√1+x×⎡⎢
⎢
⎢
⎢
⎢
⎢⎣(1−√x)−(1+x)(−12√x)(1−√x)2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
=√1−√x2√1+x×⎡⎣2√x−2x+1+x2√x(1−√x)2⎤⎦
=√1−√x2√1+x×⎡⎣2√x−x+12√x(1−√x)2⎤⎦
=2√x−x+14√x√1+x(1−√x)√(1−√x)