wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : 2a0f(x)=dx=a0f(x)dx+a0f(2ax)dx

Open in App
Solution

R.H.S. =a0f(x)dx+a0f(2ax)dx
=I1+I2
For I2=a0f(2ax)dx
Put 2ax=t
dx=dt
When x=0, then t=2a
When x=a, then t=a
a0f(2ax)dx=a2af(t)(dt)
=a2af(t)dt .... (baf(x)dx=abf(x)dx)
a0f(2ax)dx=2aaf(x)dx
I1+I2=a0f(x)dx+2aaf(x)dx
=2a0f(x)dx= L.H.S.
2a0f(x)dx=a0f(x)dx+a0f(2ax)dx

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon