wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that x0[t]dt=[x]([x]1)2+[x](x[x]), where [] denotes the greatest integer function.

Open in App
Solution

Given : x0[t]dt=[x]([x]1)2+[x](x[x])
I=x0[t]dtI=1x=0[t]dt+2x=1[t]dt+3x=2[t]dt.........+xx=[x][t]dtI=0+211dt+232dt.........+[x]xx=[x]dtI=1(21)+2(32)+.........1.([x]1)+[x](x[x])I=1+2+3+.........([x]1)+[x](x[x])I=1i=1n+[x](x[x])I=[x]([x]1)2+[x](x[x])
Hence proved that x0[t]dt=[x]([x]1)2+[x](x[x])

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon