1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Compound Angles
Prove that:i ...
Question
Prove that:
(i)
sin
A
+
B
+
sin
A
-
B
cos
A
+
B
+
cos
A
-
B
=
tan
A
(ii)
sin
A
-
B
cos
A
cos
B
+
sin
B
-
C
cos
B
cos
C
+
sin
C
-
A
cos
C
cos
A
=
0
(iii)
sin
A
-
B
sin
A
sin
B
+
sin
B
-
C
sin
B
sin
C
+
sin
C
-
A
sin
C
sin
A
=
0
(iv) sin
2
B = sin
2
A + sin
2
(A − B) − 2 sin A cos B sin (A − B)
(v) cos
2
A + cos
2
B − 2 cos A cos B cos (A + B) = sin
2
(A + B)
(vi)
tan
A
+
B
cot
A
-
B
=
tan
2
A
-
tan
2
B
1
-
tan
2
A
tan
2
B
Open in App
Solution
i
LHS
=
sin
A
+
B
+
sin
A
-
B
cos
A
+
B
+
cos
A
-
B
=
sin
A
cos
B
+
cos
A
sin
B
+
sin
A
cos
B
-
cos
A
sin
B
cos
A
cos
B
-
sin
A
sin
B
+
cos
A
cos
B
+
sin
A
sin
B
=
2
sin
A
cos
B
2
cos
A
cos
B
=
sin
A
cos
A
=
tan
A
=
RHS
Hence
proved
.
ii
LHS
=
sin
A
-
B
cos
A
cos
B
+
sin
B
-
C
cos
B
cos
C
+
sin
C
-
A
cos
C
cos
A
=
sin
A
cos
B
-
cos
A
sin
B
cos
A
cos
B
+
sin
B
cos
C
-
cos
B
sin
C
cos
B
cos
C
+
sin
C
cos
A
-
cos
C
sin
A
cos
C
cos
A
=
sin
A
cos
B
cos
A
cos
B
-
cos
A
sin
B
cos
A
cos
B
+
sin
B
cos
C
cos
B
cos
C
-
cos
B
sin
C
cos
B
cos
C
+
sin
C
cos
A
cos
C
cos
A
-
cos
C
sin
A
cos
C
cos
A
=
sin
A
cos
A
-
sin
B
cos
B
+
sin
B
cos
B
-
sin
C
cos
C
+
sin
C
cos
C
-
sin
A
cos
A
=
tan
A
-
tan
B
+
tan
B
-
tan
C
+
tan
C
-
tan
A
=
0
=
RHS
Hence
proved
.
iii
LHS
=
sin
A
-
B
sin
A
sin
B
+
sin
B
-
C
sin
B
sin
C
+
sin
C
-
A
sin
C
sin
A
=
sin
A
cos
B
-
cos
A
sin
B
sin
A
sin
B
+
sin
B
cos
C
-
cos
B
sin
C
sin
B
sin
C
+
sin
C
cos
A
-
cos
C
sin
A
sin
C
sin
A
=
sin
A
cos
B
sin
A
sin
B
-
cos
A
sin
B
sin
A
sin
B
+
sin
B
cos
C
sin
B
sin
C
-
cos
B
sin
C
sin
B
sin
C
+
sin
C
cos
A
sin
C
sin
A
-
cos
C
sin
A
sin
C
sin
A
=
cos
B
sin
B
-
cos
A
sin
A
+
cos
C
sin
C
-
cos
B
sin
B
+
cos
A
sin
A
-
cos
C
sin
C
=
c
o
t
B
-
c
o
t
A
+
c
o
t
C
-
c
o
t
B
+
c
o
t
A
-
c
o
t
C
=
0
=
RHS
Hence
proved
.
iv
RHS
=
sin
2
A
+
sin
2
A
-
B
-
2
sin
A
cos
B
sin
A
-
B
=
sin
2
A
+
sin
A
-
B
sin
A
-
B
-
2
sin
A
cos
B
=
sin
2
A
+
sin
A
-
B
sin
A
cos
B
-
cos
A
sin
B
-
2
sin
A
cos
B
=
sin
2
A
+
sin
A
-
B
-
sin
A
cos
B
-
cos
A
sin
B
=
sin
2
A
-
sin
A
-
B
sin
A
cos
B
+
cos
A
sin
B
=
sin
2
A
-
sin
A
-
B
sin
A
+
B
=
sin
2
A
-
sin
2
A
-
sin
2
B
=
sin
2
A
-
sin
2
A
+
sin
2
B
=
sin
2
B
=
LHS
Hence
proved
.
v
LHS
=
cos
2
A
+
cos
2
B
-
2
cos
A
cos
B
cos
A
+
B
=
cos
2
A
+
1
-
sin
2
B
-
2
cos
A
cos
B
cos
A
+
B
=
1
+
cos
2
A
-
sin
2
B
-
2
cos
A
cos
B
cos
A
+
B
=
1
+
cos
2
A
-
sin
2
B
-
2
cos
A
cos
B
cos
A
+
B
=
1
+
cos
A
+
B
cos
A
-
B
-
2
cos
A
cos
B
cos
A
+
B
=
1
+
cos
A
+
B
cos
A
-
B
-
2
cos
A
cos
B
=
1
+
cos
A
+
B
cos
A
cos
B
+
sin
A
sin
B
-
2
cos
A
cos
B
=
1
+
cos
A
+
B
-
cos
A
cos
B
+
sin
A
sin
B
=
1
-
cos
A
+
B
cos
A
cos
B
-
sin
A
sin
B
=
1
-
cos
A
+
B
cos
A
+
B
=
1
-
cos
2
A
+
B
=
sin
2
A
+
B
=
RHS
Hence
proved
.
vi
LHS
=
tan
A
+
B
c
o
t
A
-
B
=
tan
A
+
B
1
tan
A
-
B
=
tan
A
+
B
×
tan
A
-
B
=
tan
A
+
tan
B
1
-
tan
A
tan
B
×
tan
A
-
tan
B
1
+
tan
A
tan
B
=
tan
A
+
tan
B
tan
A
-
tan
B
1
-
tan
A
tan
B
1
+
tan
A
tan
B
=
tan
A
2
-
tan
B
2
1
2
-
tan
A
tan
B
2
=
tan
2
A
-
tan
2
B
1
-
tan
2
A
tan
2
B
=
RHS
Hence
proved
.
Suggest Corrections
0
Similar questions
Q.
Prove:
sin
(
2
A
+
B
)
sin
A
−
2
cos
(
A
+
B
)
=
sin
B
sin
A
Q.
If A+B+C=180degree. Prove that sin2A+sin2B+sin2C=4×sinA×sinB×sinC.
Q.
Prove that
s
i
n
(
2
A
+
B
)
s
i
n
A
−
2
c
o
s
(
A
+
B
)
=
s
i
n
B
s
i
n
A
Q.
If A,B,C are the angles of triangle ABC, then
∣
∣ ∣
∣
s
i
n
2
A
s
i
n
C
s
i
n
B
s
i
n
C
s
i
n
2
B
s
i
n
A
s
i
n
B
s
i
n
A
s
i
n
2
C
∣
∣ ∣
∣
is equal to
Q.
In triangle
A
B
C
prove that
i.
sin
A
=
sin
(
B
+
C
)
ii.
sin
2
A
=
−
sin
(
2
B
+
2
C
)
iii.
cos
A
=
−
cos
(
A
+
B
)
iv
tan
A
+
B
2
=
−
cot
C
2
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Compound Angles
MATHEMATICS
Watch in App
Explore more
Trigonometric Ratios of Compound Angles
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app