wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i) sin A+B+sin A-Bcos A+B+cos A-B=tan A
(ii) sin A-Bcos A cos B+sin B -Ccos B cos C+sin C-Acos C cos A=0
(iii) sin A-Bsin A sin B+sin B-Csin B sin C+sin C-Asin C sin A=0
(iv) sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
(v) cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
(vi) tan A+Bcot A-B=tan2A-tan2 B1-tan2 A tan2 B

Open in App
Solution

i LHS= sinA+B+sinA-BcosA+B +cosA-B =sinA cosB +cosA sinB + sinA cosB - cosA sinBcosA cosB -sinA sinB +cosA cosB +sinA sinB =2sinA cosB2cosA cosB =sinAcosA =tanA = RHSHence proved.

ii LHS = sinA-BcosA cosB+sinB-CcosB cosC + sinC-AcosC cosA =sinA cosB - cosA sinBcosA cosB + sinB cosC -cosB sinCcosB cosC +sinC cosA-cosC sinAcosC cosA =sinA cosBcosA cosB - cosA sinBcosA cosB +sinB cosCcosB cosC - cosB sinCcosB cosC +sinC cosAcosC cosA -cosC sinAcosC cosA =sinAcosA - sinBcosB +sinBcosB - sinCcosC +sinCcosC-sinAcosA =tanA - tanB + tanB -tanC +tanC -tanA = 0 =RHSHence proved.

iii LHS = sinA-BsinA sinB +sinB-CsinB sinC + sinC-AsinC sinA =sinA cosB -cosA sinBsinA sinB + sinB cosC -cosB sinCsinB sinC+sinC cosA -cosC sinAsinC sinA =sinA cosBsinA sinB - cosA sinBsinA sinB + sinB cosCsinB sinC - cosB sinCsinB sinC + sinC cosAsinC sinA - cosC sinAsinC sinA =cosBsinB - cosAsinA + cosCsinC-cosBsinB +cosAsinA - cosCsinC = cotB - cotA + cotC -cotB+cotA-cotC =0 =RHSHence proved.

iv RHS= sin2A + sin2A-B -2sinA cosB sinA-B = sin2A + sinA-B sinA-B -2sinA cosB = sin2A + sinA-B sinA cosB - cosA sinB - 2sinA cosB = sin2A + sinA-B -sinA cosB - cosA sinB = sin2A - sinA-B sinA cosB + cosA sinB = sin2A - sinA-B sinA+B = sin2A - sin2A - sin2B = sin2A - sin2A + sin2B = sin2B = LHSHence proved.

v LHS = cos2A + cos2B -2cosA cosB cosA+B = cos2A + 1 - sin2B - 2cosA cosB cosA+B =1 + cos2A - sin2B - 2cosA cosB cosA+B =1 + cos2A - sin2B - 2cosA cosB cosA+B =1 + cosA+BcosA-B - 2cosA cosB cosA+B =1 + cosA+BcosA-B - 2cosA cosB =1 + cosA+BcosA cosB + sinA sinB - 2cosA cosB =1 + cosA+B-cosA cosB + sinA sinB =1 - cosA+BcosA cosB - sinA sinB =1 - cosA+BcosA+B =1 - cos2A+B = sin2A+B = RHSHence proved.

vi LHS =tanA+BcotA-B =tanA+B1tanA-B = tanA+B × tanA-B = tanA +tanB1-tanA tanB×tanA -tanB1+tanAtanB =tanA+tanBtanA -tanB1-tanA tanB1 + tanA tanB =tanA2-tanB212-tanA tanB2 =tan2A -tan2B1 - tan2A tan2B = RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon