1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
Prove that: ...
Question
Prove that:
sec
2
θ
=
1
+
tan
2
θ
.
Open in App
Solution
Let
Δ
A
B
P
is a right angle triangle, where
∠
B
=
90
o
.
Let
∠
P
A
B
=
θ
.
so,
tan
θ
=
P
B
A
B
.
.
.
.
.
(
1
)
and,
sec
θ
=
P
A
A
B
.
.
.
.
.
.
(
2
)
By applying Pythagoras theorem, i
n
Δ
A
B
P
,
P
A
2
=
P
B
2
+
A
B
2
Dividing both sides by
A
B
2
⇒
P
A
2
A
B
2
=
P
B
2
A
B
2
+
A
B
2
A
B
2
⇒
(
P
A
A
B
)
2
=
(
P
B
A
B
)
2
+
(
A
B
A
B
)
2
[from
(
1
)
and
(
2
)
]
⇒
(
sec
θ
)
2
=
(
tan
θ
)
2
+
1
⇒
sec
2
θ
=
tan
2
θ
+
1
.
H
e
n
c
e
,
p
r
o
v
e
d
.
Suggest Corrections
0
Similar questions
Q.
Prove:
tan
2
θ
1
+
tan
2
θ
+
cot
2
θ
1
+
cot
2
θ
=
1
Q.
Prove that
sec
2
θ
−
cos
e
c
2
θ
=
tan
2
θ
−
cot
2
θ
Q.
Prove that
tan
θ
-
cot
θ
sin
θ
cos
θ
=
tan
2
θ
-
cot
2
θ
.