Prove that sin20×sin40×sin60×sin80=316
Consider LHS
sin20×sin40×sin60×sin80=sin60[sin20×sin40×sin80]=32[sin20×sin(60–20)×sin(60+20)]=32sin3(20)4∵sinAsin(60−A)sin(60+A)=14sin3A=32sin604=3232×4=32×38=316
=RHS∴LHS=RHS
Hence proved