1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
Prove that : ...
Question
Prove that :
sin
4
A
−
cos
4
A
=
sin
2
A
−
cos
2
A
=
2
sin
2
A
−
1
=
1
−
2
cos
2
A
Open in App
Solution
We have,
LHS =
s
i
n
4
A
-
c
o
s
4
A
⇒
LHS =
(
s
i
n
2
A
)
2
−
(
c
o
s
2
A
)
2
⇒
LHS =
(
s
i
n
2
A
+
c
o
s
2
A
)
(
s
i
n
2
A
−
c
o
s
2
A
)
⇒
LHS =
s
i
n
2
A
−
c
o
s
2
A
[
∵
s
i
n
2
A
+
c
o
s
2
A
=
1
]
⇒
LHS =
s
i
n
2
A
−
(
1
−
s
i
n
2
A
) =
2
s
i
n
2
A
−
1
⇒
LHS =
2
(
1
−
c
o
s
2
A
)
−
1
=
1
−
2
c
o
s
2
A
= RHS
Suggest Corrections
2
Similar questions
Q.
Prove that
(
1
−
2
sin
2
A
)
cos
4
A
−
sin
4
A
=
2
cos
2
A
−
1
Q.
Prove that:
cos
4
A
−
sin
4
A
+
1
=
2
cos
2
A
.
Q.
[cos
4
A - sin
4
A] is equal to:
Q.
cos
4
A − sin
4
A is equal to
(a) 2 cos
2
A + 1
(b) 2 cos
2
A − 1
(c) 2 sin
2
A − 1
(d) 2 sin
2
A + 1