wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sin6x+cos6x=1-3sin2cos2x


Open in App
Solution

Trigonometry identity:

Let us consider

LHS:sin6x+cos6=(sin2x)3+(cos2x)3

By using the formula,a3+b3=(a+b)(a2+b2โ€“ab)

=(sin2x+cos2x)[(sin2x)2+(cos2x)2โ€“sin2xcos2x]Byusingtheformula,sin2x+cos2x=1anda2+b2=(a+b)2โ€“2ab=1ร—[(sin2x+cos2x)2โ€“2sin2xcos2xโ€“sin2xcos2x]=12โ€“3sin2xcos2x=1โ€“3sin2xcos2x

= RHS

LHS = RHS

Hence it is proved that sin6x+cos6x=1-3sin2cos2x.


flag
Suggest Corrections
thumbs-up
73
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Special Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon