Prove that: sin6x+cos6x=1-3sin2cos2x
Trigonometry identity:
Let us consider
LHS:sin6x+cos6=(sin2x)3+(cos2x)3
By using the formula,a3+b3=(a+b)(a2+b2โab)
=(sin2x+cos2x)[(sin2x)2+(cos2x)2โsin2xcos2x]Byusingtheformula,sin2x+cos2x=1anda2+b2=(a+b)2โ2ab=1ร[(sin2x+cos2x)2โ2sin2xcos2xโsin2xcos2x]=12โ3sin2xcos2x=1โ3sin2xcos2x
= RHS
LHS = RHS
Hence it is proved that sin6x+cos6x=1-3sin2cos2x.
Prove that cot x cot 2x โ cot 2x cot 3x โ cot 3x cot x = 1