L.H.S=(sinA+cscA)2+(cosA+secA)2
=sin2A+csc2A+2sinAcscA+cos2A+sec2A+2cosAsecA
=(sin2A+cos2A)+(csc2A+sec2A)+2sinAcscA+2cosAsecA
=1+(csc2A+sec2A)+2sinAcscA+2cosAsecA since sin2θ+cos2θ=1
=2+(1sin2A+1cos2A)+2sinA×1sinA+2cosA×1cosA since cscA=1sinA and secA=1cosA
=2+(1sin2A+1cos2A)+2+2
=6+1sin2Acos2A
=6+csc2Asec2A=R.H.S
Hence proved.