wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
(sinA+cscA)2+(cosA+secA)2=6+csc2Asec2A

Open in App
Solution

L.H.S=(sinA+cscA)2+(cosA+secA)2
=sin2A+csc2A+2sinAcscA+cos2A+sec2A+2cosAsecA
=(sin2A+cos2A)+(csc2A+sec2A)+2sinAcscA+2cosAsecA
=1+(csc2A+sec2A)+2sinAcscA+2cosAsecA since sin2θ+cos2θ=1
=2+(1sin2A+1cos2A)+2sinA×1sinA+2cosA×1cosA since cscA=1sinA and secA=1cosA
=2+(1sin2A+1cos2A)+2+2
=6+sin2A+cos2Asin2Acos2A
=6+1sin2Acos2A
=6+csc2Asec2A=R.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon