Expanding the sigma on putting k = 1,2,3,....,n
S=(n−1)cos2πn+(n−2)cos4πn+.........+1cos(n−1)2πn...(1)
Replacing each angle by θby2π−θ in (1), we get
S=(n−1)cos(n−1)2πn+(n−2)cos(n−2)2πn+.........+1cos(n−1)2πn...by(1)
Add terms having the same angle and take n common.
∴2S=n[cos2πn+cos4πn+cos6πn+......+cos(n−1)2πn]
Angles are in A.P. of d=2πn
=⎡⎢
⎢
⎢⎣sin(n−1)πnsinπncos2πn+(n−1)2πn2⎤⎥
⎥
⎥⎦
=n⋅1cosπ=−n∵sin(π−θ)=sinθ
∴S=−n/2