Prove that tan2A+cot2A+2=cosec2Asec2A
Determine the proof of the expression that is tan2A+cot2A+2=cosec2Asec2A
Use formula:
sec2θ-tan2θ=1cosec2θ-cot2θ=1
Solve the L.H.S part:
tan2A+cot2A+2=(1+tan2A)+(1+cot2A)⇒=sec2A+cosec2A⇒=1cos2A+1sin2A⇒=sin2A+cos2Acos2Asin2A∵sin2A+cos2A=1⇒=1cos2Asin2A⇒=cosec2Asec2A
Hence, the L.H.S= R.H.S.