Prove that:
tan 8212∘=(√3+√2)(√2+1)=√2+√3+√4+√6
tan 8212∘=tan (90−712)∘=cot 712∘=cot A If A=712∘
Now
cot A=cos Asin A=2 cos2 A2 sin A cos A=1+cos2 Asin2 Acot A=1+cos 15sin 15=1+cos(45−30)sin 15
=1+(1√2×√32+1√2×12)1√2×√32−1√2×12=2√2+(√3+1)√3−1×√3+1√3+1=2√2(√3+1)+(√3+1)23−1=2√6+2√2+4+2√32cot A=√6+√2+2+√3 ⋯(i)=√2+2+√6+√3
=√2+(1+√2)+√3(√2+1)cot A=(√2+1)(√2+√3) ⋯(ii)
From equation (i) and (ii)
tan 8212∘=cot 712∘=√2+√3+√4+√6=(√2+1)(√2+√3)