Prove that (tanA+sinA)(tanA-sinA)=(secA+1)(secA-1).
Solving the left hand side (LHS) of the equation:
Taking the LHS and solving we get,
tanA+sinAtanA-sinA
=sinAcosA+sinAsinAcosA-sinA tanA=sinAcosA
=sinA1cosA+1sinA1cosA-1 secA=1cosA
=secA+1secA-1=RHS
i.e. (tanA+sinA)(tanA-sinA)=(secA+1)(secA-1)
Hence, proved.