Prove that tan75°+cot75°=4.
To prove tan75°+cot75°=4
Consider L.H.S :
tan75°+cot75°=tan75°+1tan75°=tan(30°+45°)+1tan(30°+45°)∵tan(A+B)=tanA+tanB1-tanAtanB=tan30°+tan45°1-tan30°tan45°+1tan30°+tan45°1-tan30°tan45°=13+11-131+113+11-131[∵tan30°=13andtan45°=1]=1+333-13+11+333-13=1+33×33-1+11+33×33-1=1+33-1+11+33-1=1+33-1+3-11+3=(1+3)2+(3-1)2(3)2-12∵(a+b)2=a2+b2+2aband(a-b)2=a2+b2-2aband(a2-b2)=(a+b)(a-b)=1+3+23+1+3-233-1=82=4
Hence, it is proved that tan75°+cot75°=4