wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the sum of all the angles of a quadrilateral is 360.

Open in App
Solution

4


Consider a quadrilateral PQRS.

Join QS.

To prove: ∠P + ∠Q + ∠R + ∠S = 360º

Proof:

Consider triangle PQS, we have,

⇒ ∠P + ∠PQS + ∠PSQ = 180º ... (1) [Using Angle sum property of Triangle]

Similarly, in triangle QRS, we have,

⇒ ∠SQR + ∠R + ∠QSR = 180º ... (2) [Using Angle sum property of Triangle]

On adding (1) and (2), we get

∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º

⇒ ∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ = 360º

⇒ ∠P + ∠Q + ∠R + ∠S = 360º [Hence proved]


flag
Suggest Corrections
thumbs-up
678
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Quadrilaterals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon