Prove that xaxb1/ab·xbxc1/bc·xcxa1/ca=1
Proof:
Consider the LHS of the given expression.
LHS=xaxb1/ab·xbxc1/bc·xcxa1/ca⇒=xa-bab·xb-cbc·xc-aca[∵Useaman=am-nand(am)n=amn]⇒=xa-bab+b-cbc+c-aca⇒=xc(a-b)+a(b-c)+b(c-a)abc⇒=xac-bc+ab-ac+bc-ababc⇒=x0abc⇒=x0[∵a0=1]⇒=1⇒LHS=RHS
Hence proved.
In the adjoining figure,BD||CA, E is the midpoint of CA and BD=12CA.Prove that ar(△ ABC)=2ar(△ DBC).
Prove that :
(i) (xaxb)1ab(xbxc)1bc(xcxa)1ca=1(ii) 11+xa−b+11+xb−a=1