Prove the following;
2sin−135=tan−1247
Given, 2sin−135=tan−1247
LHS =2sin−135=sin−1[2×35√1−(35)2] [∵2sin−1y=sin−1(2y√1−y2)]=sin−1[2×35×45]=sin−1(2425)=tan−1⎡⎢⎣2425√1−(2425)2⎤⎥⎦ (∵sin−1y=tan−1y√1−y2)tan−1[2425√1−576625]=tan−1[2425×257]=tan−1[247]=RHS.