If x is any real or complex number, the hyperbolic sin of x & hyperbolic cosine of x is defines by-
sinhx=12(ex−e−x) …………..(A)
coshx=12(ex+e−x) ………….(B)
(i) cosh2x−sinh2x=1
LHS
⇒cosh2x−sinh2x=[ex+e−x2]2−[ex−e−x2]2
ex×e−x=ex−x=eo=1 =(e2x+e−2x+2ex.e−x)(e2x+e−1x−2ex.e−x)4
=e2x+e−2x+2eo−e2x−e−2x=2eo4
=4eo4=eo=1 RHS.
(ii) sinh2x=2sinhxcoshx
RHS⇒2sinhxcoshx
⇒2(ex−e−x2)×(ex+e−x2) Using (a−b)(a+b)=a2−b2
⇒12(e2x−e−2x) → This is similar except (2x) in place of x in equation 2)
⇒sinh(2x) LHS.
iii) cosh2x=cosh2x+sinh2x
RHS⇒cosh2x+sinh2x
=[ex+e−x2]2+[ex+e−x2]2
=(e2x+e−2x+2e2)+(e2x+e−2x−2e2)4
=2(e2x+e−2x)4
=(e2x+e−2x2) → This is similar to equation B except (2x) in place of x.
=cosh(2x) LHS
iv) tanh2x=1−sech2x
LHS⇒tanh2x
=sinh2xcosh2x=(ex−e−x2)2(ex+e−x2)2=(ex−e−xex+e−x)2
RHS⇒1−sech2x
⇒1−1cosh2x
⇒1−1(ex+e−x2)2
⇒1−4(ex+e−x)2
⇒e2x+e−2x+2eo−4(ex+e−x)2=(ex)2+(e−x)2−2ex.e−x(ex+e−x)2=(ex−e−x)2(ex+e−x)2
LHS=RHS.