wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following :
(a) cosh2xsinh2x=1
(b) sinh2x=2sinhxcoshx
(c) cosh2x=cosh2x+sinh2x
(d) tanh2x=1sech2x

Open in App
Solution

If x is any real or complex number, the hyperbolic sin of x & hyperbolic cosine of x is defines by-
sinhx=12(exex) …………..(A)
coshx=12(ex+ex) ………….(B)
(i) cosh2xsinh2x=1
LHS
cosh2xsinh2x=[ex+ex2]2[exex2]2
ex×ex=exx=eo=1 =(e2x+e2x+2ex.ex)(e2x+e1x2ex.ex)4
=e2x+e2x+2eoe2xe2x=2eo4
=4eo4=eo=1 RHS.
(ii) sinh2x=2sinhxcoshx
RHS2sinhxcoshx
2(exex2)×(ex+ex2) Using (ab)(a+b)=a2b2
12(e2xe2x) This is similar except (2x) in place of x in equation 2)
sinh(2x) LHS.
iii) cosh2x=cosh2x+sinh2x
RHScosh2x+sinh2x
=[ex+ex2]2+[ex+ex2]2
=(e2x+e2x+2e2)+(e2x+e2x2e2)4
=2(e2x+e2x)4
=(e2x+e2x2) This is similar to equation B except (2x) in place of x.
=cosh(2x) LHS
iv) tanh2x=1sech2x
LHStanh2x
=sinh2xcosh2x=(exex2)2(ex+ex2)2=(exexex+ex)2
RHS1sech2x
11cosh2x
11(ex+ex2)2
14(ex+ex)2
e2x+e2x+2eo4(ex+ex)2=(ex)2+(ex)22ex.ex(ex+ex)2=(exex)2(ex+ex)2
LHS=RHS.

1188619_1291550_ans_d4f4cea54ff44759944ce128624a29fd.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon