Question 11
Determine k, so that k2+4k+8,2k2+3k+6and3k2+4k+4 are three consecutive terms of an AP.
Open in App
Solution
Given, k2+4k+8,2k2+3k+6and3k2+4k+4are consecutive terms of an AP. ∴2k2+3k+6−(k2+4k+8)=3k2+4k+4−(2k2+3k+6) = common difference ⇒2k2+3k+6−k2−4k−8=3k2+4k+4−2k2−3k−6 ⇒k2−k−2=k2+k−2 ⇒−k=k⇒2k=0⇒k=0