The correct option is
B 16R2−(a2+b2+c2)(r1+r2+r3−r)=4R(r1+r2+r3−r)2=16R2
r21+r22+r23+r2+2r1r2+2r2r3+2r3r1−2r[r1+r2+r3]=16R2
r21+r22+r23+r2+2(r1r2+r2r3+r3r1)−2r[ab+bc+ac−s2r]=16R2
r21+r22+r23+2s2−2[ab+bc+ac−s2]=16R2
r21+r22+r23+4s2−2(ab+bc+ac)=16R2
r21+r22+r23=16R2−4s2+2(ab+bc+ac)
=16R2−(a+b+c)2+2ab+2bc+2ac
=16R2−(a2+b2+c2)