wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(r1r)(r2+r3)=a2

Open in App
Solution

To prove: (r1r)(r2+r3)=a2
We know,
r1=4RsinA2cosB2cosC2r2=4RsinB2cosC2cosA2r3=4RsinC2cosA2cosB2r=4RsinA2sinB2sinC2
Now,
(r1r)(r2+r3)=(4RsinA2cosB2cosC24RsinA2sinB2sinC2)(4RsinB2cosC2cosA2+4RsinC2cosA2cosB2)=(4RsinA2(cosB2cosC2sinB2sinC2))(4RcosA2(sinB2cosC2+sinC2cosB2))=(4RsinA2(cosB+C2))(4RcosA2(sinB+C2))=4Rsin2A2cos2A24R2(2sinA2cosA2)2=4R2sin2A=(2RsinA)2=a2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon