The real part of coshα+iβis
coshαcosβ
cosαcosβ
cosαcoshβ
sinαsinhβ
Explanation for the correct option:
Given expression is coshα+iβ let us expand the identity and then we will find the real part of it so,
coshα+iβ=cosh(α)+cosh(iβ)+sinh(α)sinh(iβ)coshα+iβ=cosh(α)cos(β)+isinh(α)sin(β)
So, we see that real part of given expression is coshαcosβ
Hence, the correct option is (A)
if tan^-1 (alpha + ibeta)= x+iy then x is equal to?