wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sec6θ+cos6θ=13sin2θcos2θ

Open in App
Solution

LHS=sec6θ+cos6θ

=(sec2θ)3+(cos2θ)3

=(sec2θ+cos2θ)[(sin2θ)2sin2θcos2θ+(cos2θ)2]

(a3+b3=(a+b)(a2ab+b2)]

=[(sin2θ)2+(cos2θ)2+2sin2θcos2θ2sin2θcos2θsin2θcos2θ]

[adding and subtracting 2sin2θcos2θ and using identity sin2θ+cos2θ=1]

=(sin2θ+cos2θ)23sin2θcos2θ

=(sin2θ+cos2θ)23sin2θcos2θ

=123sin2θcos2θ

(sin2θ+cos2θ=1)

=13sin2θcos2θ

=RHS

LHS=RHS

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon