sec6θ+cos6θ=1−3sin2θcos2θ
LHS=sec6θ+cos6θ
=(sec2θ)3+(cos2θ)3
=(sec2θ+cos2θ)[(sin2θ)2−sin2θcos2θ+(cos2θ)2]
(∵a3+b3=(a+b)(a2−ab+b2)]
=[(sin2θ)2+(cos2θ)2+2sin2θcos2θ−2sin2θcos2θ−sin2θcos2θ]
[adding and subtracting 2sin2θcos2θ and using identity sin2θ+cos2θ=1]
=(sin2θ+cos2θ)2−3sin2θcos2θ
=(sin2θ+cos2θ)2−3sin2θcos2θ
=12−3sin2θcos2θ
(∵sin2θ+cos2θ=1)
=1−3sin2θcos2θ
=RHS
∴LHS=RHS
Hence proved.