Consider given the given expression41n−14n ,
∵xn−yn=(x−y)(xn−1+xn−2y+...+xyn−2+yn−1)
Put, x=41 and y=14.
∴41n−14n=(41−14)(41n−1+41n−2.14+...+4114n−2+14n−1)
41n−14n=27(41n−1+41n−2.14+...+4114n−2+14n−1)
Which is divisible by 27 ,
Hence, proved
Prove 41n−14nis a multiple of 27.
41n – 14nis a multiple of 27.