wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0


Open in App
Solution

L.H.S=(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)

Solving each term using an algebraic identity.

Identity used in the solution is (x+y)(xy)=x2y2

(ab)(a+b)=a2b2

Similarly(bc)(b+c)=b2c2

Also(ca)(c+a) =c2-a2

On the basis of the above information, we get

(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=a2b2+b2-c2+c2-a2

=0

LHS=RHS

Thus,(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0.

Hence proved.


flag
Suggest Corrections
thumbs-up
22
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nature of Roots
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon