Show that:(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
L.H.S=(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)
Solving each term using an algebraic identity.
Identity used in the solution is (x+y)(x–y)=x2–y2
(a–b)(a+b)=a2–b2
Similarly(b–c)(b+c)=b2–c2
Also(c–a)(c+a) =c2-a2
On the basis of the above information, we get
(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=a2–b2+b2-c2+c2-a2
=0
⇒LHS=RHS
Thus,(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0.
Hence proved.
Name the property where a,bandc
a+b=b+a:
The following table shows the ages of five people, illustrates this data using a Bar graph, and tell who is twice as old as B?