Let
A=∣∣
∣∣ab−cc+ba+cbc−aa−bb+ac∣∣
∣∣
On multiplying and dividing first column by a, we get,
A=1a∣∣
∣
∣∣a2b−cc+ba2+acbc−aa2−abb+ac∣∣
∣
∣∣
Applying C1→C1+bC2+cC3, we get,
A=1a∣∣
∣
∣∣a2+b2+c2b−cc+ba2+b2+c2bc−aa2+b2+c2b+ac∣∣
∣
∣∣
On taking a2+b2+c2 common from C1, we get,
A=1a(a2+b2+c2)∣∣
∣∣1b−cc+b1bc−a1b+ac∣∣
∣∣
Applying R2→R2−R1 and R3→R3−R1, we get,
A=1a(a2+b2+c2)∣∣
∣∣1b−cc+b0c−a−b0a+c−b∣∣
∣∣
Now, expanding along C1, we get,
A=1a(a2+b2+c2)×1×∣∣∣c−a−ba+c−b∣∣∣
Therefore, A=1a(a2+b2+c2)(a2+ac+ba)
A=1a(a2+b2+c2)×a(a+b+c)
A=(a+b+c)(a2+b2+c2)
Hence, proved.