1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Proof by mathematical induction
Show that X...
Question
Show that
X
3
+
X
2
+
X
+
1
X
3
−
X
2
+
X
−
1
=
X
2
+
X
+
1
X
2
−
X
+
1
, is not possible for any
X
ϵ
R
Open in App
Solution
Given,
x
3
+
x
2
+
x
+
1
x
3
−
x
2
+
x
−
1
=
x
2
+
x
+
1
x
2
−
x
+
1
x
+
1
x
−
1
=
x
2
+
x
+
1
x
2
−
x
+
1
On cross multiplying, we get
⇒
x
3
−
x
2
+
x
+
x
2
−
x
+
1
=
x
3
+
x
2
+
x
−
x
2
−
x
−
1
⇒
1
=
−
1
, which is not possible
Suggest Corrections
0
Similar questions
Q.
If x is a proper fraction, show that
x
1
−
x
2
−
x
3
1
−
x
6
+
x
5
1
−
x
10
−
.
.
.
.
.
.
.
=
x
1
+
x
2
+
x
3
1
+
x
6
+
x
5
1
+
x
10
+
.
.
.
.
.
Q.
If
x
3
+
x
2
+
x
+
1
x
3
−
x
2
+
x
−
1
=
x
2
+
x
+
1
x
2
−
x
+
1
, then the number of real-value of
x
satisfying are
Q.
If x + (1/x) = 3, find x
2
+ (1/x
2
) and x
3
+ (1/x
3
)