We have,
f(x)=|3x+2|
L.H.D.
limx→23−f(x)=limh→0f(x)−f(x−h)h
=limh→0f(23)−f(23−h)h
=limh→0∣∣∣3×23+2∣∣∣−∣∣∣3×(23−h)+2∣∣∣h
=limh→0|4|−|(2−3h)+2|h
=limh→04−|4−3h|h
=limh→03hh
=3
R.H.D.
limx→23+f(x)=limh→0f(x+h)−f(x)h
=limh→0f(23+h)−f(23)h
=limh→0∣∣∣3×(23+h)+2∣∣∣−∣∣∣3×23+2∣∣∣h
=limh→0|(2+3h)+2|−4h
=limh→0|4+3h|−4h
=limh→03hh
=3
L.H.D.=R.H.D.
Therefore, differentiable at 23