wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that π0xsinx1+cos2xdx=π24

Open in App
Solution

L.H.S


I=π0xsinx1+cos2xdx ……….. (1)



We know that


baf(x)dx=baf(a+bx)dx



Therefore,


I=π0(πx)sin(πx)1+cos2(πx)dx


I=π0(πx)sinx1+cos2(x)dx


I=π0(πx)sinx1+cos2xdx


I=π0πsinx1+cos2xdxπ0xsinx1+cos2xdx


I=π0πsinx1+cos2xdxI


2I=π0πsinx1+cos2xdx


I=12π0πsinx1+cos2xdx ……. (2)



Let t=cosx


dtdx=sinx


dt=sinxdx



From equation (2), we get


I=1211π1+t2dt


I=π2[tan1(t)]11


I=π2[tan1(1)tan1(1)]


I=π2[3π4π4]


I=π2[π2]


I=π24



Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon