L.H.S
I=∫π0xsinx1+cos2xdx ……….. (1)
We know that
∫baf(x)dx=∫baf(a+b−x)dx
Therefore,
I=∫π0(π−x)sin(π−x)1+cos2(π−x)dx
I=∫π0(π−x)sinx1+cos2(−x)dx
I=∫π0(π−x)sinx1+cos2xdx
I=∫π0πsinx1+cos2xdx−∫π0xsinx1+cos2xdx
I=∫π0πsinx1+cos2xdx−I
2I=∫π0πsinx1+cos2xdx
I=12∫π0πsinx1+cos2xdx ……. (2)
Let t=cosx
dtdx=−sinx
−dt=sinxdx
From equation (2), we get
I=−12∫−11π1+t2dt
I=−π2[tan−1(t)]−11
I=−π2[tan−1(−1)−tan−1(1)]
I=−π2[3π4−π4]
I=−π2[π2]
I=−π24
Hence, proved.